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1. Introduction

Over the last few decades, black hole thermodynamics has been one of the most intense

topics of research in theoretical physics (for a comprehensive review, see [1]). It is by now

well known that black holes are thermodynamic systems, which posess a macroscopic en-

tropy, and a characteristic Hawking temperature, related to the surface gravity on the event

horizon. Indeed, these quantities satisfy the first three laws of thermodynamics although

the third law in the Nernst form do not seem to apply to black holes. The macroscopic

entropy of black holes is a function of their mass M, charge Q and angular momentum

J describing a thermodynamic macrostate and is given as Smacro = Smacro(M,J,Q). The

entropy follows the Bekenstein-Hawking area law in standard Einstein gravity coupled to

gauge fields such that Smacro = 1
4
Ah where Ah is the area of the event horizon. However

an understanding of the microscopic statistical origin of black hole entropy has been an

outstanding theoretical issue. Although considerable progress has been made in the recent

past in matching microscopic state counting with the macroscopic entropy for extremal

BPS black holes in string theory, a clear comprehension of the statistical microstates of

black holes is still elusive. Recent interest in this area has been focussed on subleading

corrections to the entropy from higher derivative terms in the low energy string theory

effective action [2]. These corrections cause deviations from the area law and for certain

classes of supersymmetric extremal black holes leads to exact maching upto subleading

corrections with microscopic state counting in the associated confomal field theory.

It is well known that equilibrium thermodynamic systems posess interesting geomet-

rical features [3]. An inner product on the equilibrium thermodynamic state space in the

energy representation was provided by Weinhold [4] as the Hessian matrix of the internal

energy with respect to the extensive thermodynamic variables as,

hij = ∂i∂jU(S,Na)
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where U is the internal energy, S is the entropy and Na stands for the other extensive

variables and (i, j) runs over all the extensive variables. However there was no physical

interpretation asociated with this metric structure. The Weinhold inner product was later

formulated in the entropy representation by Ruppeiner [5] into a Riemannian metric in the

thermodynamic state space. The Ruppeiner geometry was however physicaly meaningful

in the context of equlibrium thermodynamic fluctuations of the system. The invariant line

element between any two equlibrium states was related to the probability distribution of

the fluctuations between them. The curvature scalar obtained from this geometry signified

interactions and was proportional to the correlation volume which diverges at the critical

points of phase transitions.1

The Ruppeiner metric on the thermodynamic state space, is defined as the Hessian of

the entropy with respect to the extensive variables and is given by

gij = −∂i∂jS(U,Na) (1.1)

in the notation introduced earlier. The negative sign is necessary as entropy is a maximum

for an equilibrium thermodynamic state in the entropy representation. It is to be noted

that here the volume V is held fixed to provide a physical scale. The Ruppeiner metric is

conformaly related to the Weinhold metric with the inverse temperature as the conformal

factor. Assuming all the extensive variables to be labeled by xi it is straightforward to

show that the probability distribution of fluctuations W (x) between two equilibrium states

is given in the Gaussian approximation as

W (x) = A exp[−
1

2
gij(x)dxidxj ]. (1.2)

Whilst the inverse metric may be shown to be the second moment of fluctuations or the

pair correlation functions and given as gij =< xixj >.

For a standard two dimensional thermodynamic state space defined by the extensive

variables (x1, x2) the application of these geometric notions to conventional thermodyamic

systems suggest that the scalar curvature indicates interactions. It may be shown that

R ∼ κ2ξ
d where ξ is the correlation length, d is the dimensionality and κ2 is a dimension-

less constant of order one. A few simple manipulations illustrate that the thermodynamic

curvature is inversely proportional to the singular part of the free energy associated with

long range correlations which diverge at the critical point of phase transitions. So the

thermodynamic curvature may be expressed as R = −κkB

φ
where φ = −κ1kB

ξd and its diver-

gence signifies a phase transition. The Ruppeiner formalism has been applied to different

condensed matter systems and is completely consistent with the scaling and hyperscal-

ing relations involving critical phenomena and have reproduced the corresponding critical

indices.

Although, isolated asymptoticaly flat black holes do not follow the usual precepts of

extensive thermodynamic systems it is possible to consider the black hole entropy as an

1This is true only for a two dimensional thermodynamic geometry. For higher dimensional geometries

all the indepedent nonzero components should be significant in the determination of interactions.
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extensive thermodynamic quantity provided the black hole is a part of a larger system

with which it is in thermal equilibrium. From this perspective the geometric notions

of thermodynamics may be applied to investigate the nature of the black hole entropy.

In particular the investigation of the covariant thermodynamic geometry of Ruppeiner

for black holes have elucidated interesting aspects of black hole phase transitions and

relations to moduli spaces. This was first explored in the context of extremal charged BPS

black hole configurations of N ≥ 2 supergravity in D = 4 which arises as the low energy

effective theory from type II string compactifications [6]. Since then, several authors have

attempted to understand this connection [7 – 10] both for supersymmetric as well as non-

supersymmetric black holes. and five dimensional rotating black rings.

The charged extremal black holes of N=2 supergravity in D=4, interacting with n vec-

tor multiplets are described by a Reissner-Nordstorm metric and are BPS states preserving

a fraction of the full N=2 supersymmetry. The n vector multiplets involve (n + 1) gauge

fields and n complex scalar fields φa. The black hole solutions are hence characterized

by electric and magnetic charges qJ and pI arising from usual flux integrals of the field

strengths and their Poincare duals. The scalar fields on the other hand serves as moduli

which parametrizes the compact internal space. The extremal charged black hole solutions

are BPS solitons which interpolate between asymptotic infinity and the near horizon geom-

etry. The spherical symmetry determines this interpolation to be a radial evolution of the

scalar moduli which thus encodes the consequent changes in the underlying internal com-

pact manifold. At asymptotic infinity one has flat Minkowski space with the scalar moduli

tending to certain arbitrary values with the ADM mass given by M(p, q, φa
∞) =| Z∞ |

where Z∞ is the complex central extension of the supersymmetry algebra. The near hori-

zon geometry is described by a AdS2 × S2 charged Bertotti-Robinson metric. The area of

the horzion and hence the macroscopic entropy is given as Smacro = A
4

= π | Z |2hor. Thus a

priori the entropy seems to depend on both the charges as well as the values of the scalar

moduli which maybe changed continuously. This is incompatible with the interpretation of

the entropy in terms of some microscopic state counting in an underlying statistical system.

However the radial variation of the moduli may be described by a damped geodesic

equation which flows to an attractive fixed point at the horizon determined by the charges.

The equations governing the scalar moduli in terms of the charges at the horzion are thus

refered to as attractor equations. This ensures that the entropy is a function of the charges

only and independent of the values of the moduli. The geodesic flow of the attractor mech-

anism involves a black hole effective potential V (p, q, φa) which is a symplectic invariant

of the N=2 special geomtery. To each critical point φa
h of the effective potential V (q, p, φ)

such that ( ∂V
∂φa )h = 0 on the moduli space Mφ, a supersymmetric Bertotti-Robinson vac-

cuum state may be associated. So the attractor flow essentialy interpolates between the

asymptoticaly flat vaccuum and the near horizon Bertotti-Robinson metric with the moduli

starting from their asymptotic values φa
∞ and flowing to the attractor values φa

h at the hori-

zon. The critical points of the potential are also the critical points of the associated central

charges where it is a minimum. The entropy is then given as Smacro = A
4

= πV (p, q, φa
h).

The thermodynamic state space for these black holes away from the critical points

would now involve also the moduli fields φa
∞ at asymptotic infinity apart from the electric
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and the magnetic charges [11]. This leads to a curved theromdynamic state space R2n⊗Mφ.

The thermodynamic variables conjugate to the moduli φa
∞ are negative of the scalar charges

Σ which serves as a chemical potential. So the first law is modified to [11]

dM = TdS + ψAdQA + χAdPA − Σadφa
∞

where (ψA, χA) were the electrostatic and magnetostatic potentials respectively.

It is interesting to ask how V (p, q, φa) defined on the moduli space of scalars Mφ

behaves as a function of the moduli. A generalization of the Ruppeiner metric to include

the moduli as extensive thermodynamic variables was proposed in [6] as the Hessian of the

effective potential;

gij = −∇i∇jV (p, q, φa
∞)

where the covariant derivatives are with respect to the moduli space metric. Notice that

πV (p, q, φ) reduces to the entropy at the critical point. The positivity of this Riemannian

metric in the extended thermodynamic state space provides a convexity condition leading

to the critical points being an extremum of the potential. This metric also turns out to be

proportional to the moduli space metric.

Although a thermodynamic interpretation of the effective potential away from the at-

tractor fixed points is not clear we may explore the properties of the moduli space through

the associated extension of the thermodynamic geometry in terms of the Hessian of the

effective potential. In particular the curvature and curvature invariants should provide

information about the singularities of the moduli space. Furthermore such a geometric

analysis may provide useful insight into the full structure of the BPS black holes away

from the attractor fixed point at the horizon and the attractor flows as certain renormal-

ization group flows. Application of these geometric ideas to non extremal black holes are

expected to be particularly significant. Additionaly such an analysis may elucidate the role

of thermodynamics away from the attractor fixed points.

The low energy effective action of N=2 supergravity interacting with n vector multi-

plets following from type II string compactifications involve higher curvature terms in an

α′ expansion. These higher derivative terms modify the Bekenstein Hawking area law and

introduces subleading corrections to the entropy of black holes. The effect of the higher

derivative terms may be analysed in Wald’s framework for generaly covariant higher deriva-

tive gravity. The entropy of extremal black holes in this analysis follows from the surface

integral of a Noether charge density over the black hole horizon. The resulting entropy

matches the conventional one at the two derivative level.

The higher derivative terms in the sueprgravity effective action are encoded in the

generalized prepotential F (Y,Υ) which is a holomorphic function, homogeneous of degree

two in the rescaled complex scalar fields Y and the anti-self dual part of graviphoton field Υ.

The attractor mechanism continues to hold in the presence of the higher derivative terms.

An application of Walds analysis to a suitably chosen prepotential yields the macroscopic

entropy as

Smacro = π( | Z |2 −4Im(ΥFΥ)) |hor

– 4 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
5

where FΥ = ∂F
∂Υ

and

| Z |2= (pIFI − qIY
I)

and FI = ∂F
∂Y I . The attractor equations may be solved to determine the scalar fields in

terms of the charges at the horizon and this ensures that the macroscopic entropy is a

function of the charges alone.

The BPS black hole solutions in N=2 supergravity fall in two distinct classes namely

the large black holes which have a non vanishing area at the two derivative level and posess

dyonic charges and the small black holes which have a vanishing area and carry electric

charges only. The large black holes may be described in terms of wrapped branes on non-

trivial cycles of the compact internal manifold . The microscopic entropy is then determined

in terms of the microstate counting through the Cardy formula in the underlying two

dimensonal CFT associated with the brane system. The microscopic entropy computed

from this is in precise agreement upto the subleading terms with the macroscopic entropy

following from the Wald formula. It must be emphasized here that the precise matching

of the Wald and the Cardy formula involves the extremal BTZ black hole. This is because

the near horizon geometry of AdS2 ×S2 has a local AdS3 structure which is asymptotic to

the BTZ black hole.

The case for the small black holes turn out to be more complicated. The microscopic

entropy matches the macroscopic one at leading orders but fails at subleading orders. S-

duality requires the addition of non holomorphic terms to the generalized pre-potential.

This leads to a required S-duality invariant macroscopic entropy with subleading corrections

but the coefficients still show a mismatch. A reformulation of the problem in terms of the

black hole free energy related to the logarithm of the black hole partition function indicates

that the corresponding ensemble must be a mixed ensemble. This proposal admits a direct

relation between the black hole entropy and the corresponding topological string partition

function. However it seems to have several problems regarding duality invariance and a

non perturbative completion.

It was observed that the attractor equations and the macroscopic entropy follow

directly from a variational principle applied to a generic class of entropy functions

Σ(p, q, Y, Ȳ ,Υ, Ῡ) of the charges, rescaled scalar moduli fields and the relevant part of

the graviphoton field. The condition for the extremum of Σ leads to the attractor equa-

tions and at the attractor point which is reached at the horizon Smacro = πΣ |h. The non

holomorphic contributions may also be incorporated in the variational framework with a

modification of the entropy function Σ. The proposal regarding the black hole partition

function may be now recast in the variational language of the entropy function. Although

this obviates most of the earlier problems the coefficients for the subleading terms still

shows a mismatch with the microscopic state counting.

It would be interesting to study the effect of the higher derivative corrections to the

thermodynamic geometry of these extremal black holes. Small black holes in string theory

are particularly interesting in this connection as their horizon area and entropy vanishes at

the two derivative level. So the thermodynamic geometry arises only from the macroscopic

entropy following from the higher derivative corrections to the area . Although at near
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extreme the thermodynamics seems to break down geometric quantities are still well defined

as is the entropy. It is particularly important to study and interpret the sensitivity of the

scalar curvature to the higher derivative corrections in the macroscopic entropy. This may

provide useful insight into the relation of thermodynamic breakdown with extremality.

It is also important to study the full structure of these interpolating solutions of the

higher derivative theory away from the horizon. This would naturaly involve the entropy

function Σ away from the attractor point. Although a thermodynamic interpretation of

the entropy function Σ away from the attractor fixed point is not clear, a generalization of

the Ruppeiner metric may be proposed as the Hessian of the entropy function with respect

to all the extensive thermodynamic variables including the moduli fields as

gij = −∇i∇jΣ((p, q, Y, Ȳ ,Υ, Ῡ),

where the covariant derivatives are with respect to the moduli space metric. Following [6]

it seems plausible that this metric would also be proportional to the moduli space metric.

Study of the curvature and the curvature invariants of this generalized thermodynamic ge-

ometry is hence expected to provide important insight regarding the singularities in moduli

space and their significance. This may also lead to a viable thermodynamic interpretation

away from the attractor fixed points. In particular it may be possible to understand the

attractor mechanism as some renormalization group flows in the space of thermodynamic

geometries.

The simplest black hole system for which it is possible to analyze the thermodynamic

geometry is the three dimensional rotating BTZ black hole which as mentioned earlier

plays a particularly significant role in the attractor mechanism. Here, one may construct

the Ruppeiner metric in terms of the black hole mass and its angular momentum (the

non-rotating BTZ black hole is trivial), and it turns out that this metric is flat2 [10].3

Recently Kraus and Larsen [12] and Solodukhin [13] have shown how various properties

of BTZ black holes are affected by the addition of the gravitational Chern-Simons term to

the three dimensional Einstein-Hilbert action. In particular, they show that the black hole

entropy is modified by the presence of this term and obtain an explicit expression for this

modified entropy. In this context, it is imperative to re-examine the Ruppeiner geometry

of the BTZ black hole, in the presence of the Chern-Simons term.

A black hole in equilibrium with the thermal Hawking radiation at a fixed Hawking

temperature is conventionaly described by a canonical ensemble. Although it now appears

in the light of recent observations that a mixed ensemble may be more appropriate we stick

to the conventional approach in this article. The thermodynamic geometry of the black

hole entropy function has hence been determined with reference to the canonical ensemble.

However its well known that thermal fluctuations in the canonical ensemble generates log-

arithmic corrections to the entropy [14]. These corrections vanish in the thermodynamic

limit where the canonical and the microcanonical entropy are identical. For black holes such

2Ricci flatness in two dimensions implies a flat space.
3See ref. [9] and [10] for a classification of the nature of the Ruppeiner metrics for black holes in various

dimensions.

– 6 –



J
H
E
P
1
1
(
2
0
0
6
)
0
1
5

logarithmic corrections to the canonical entropy have been obtained in [15, 16]. It is a natu-

ral question as to whether the thermodynamic geometry of black holes are sensitive to these

fluctuations. As we will show in the next few sections, thermal fluctuations indeed modify

the Ruppeiner geometry of the BTZ black-holes with and without the Chern-Simons term.

In another interesting development, Sen and later Sahoo and Sen [17] have computed

the BTZ black hole entropy in the presence of the Chern-Simons and higher derivative

terms [18]. A variant of the attractor mechanism involving the use of the Sen entropy func-

tion E(p, q, u, v) was applied to an effective two-dimensional theory that results upon mak-

ing the angular coordinate of the BTZ solution as a compact direction. Here (p, q) are the

charges and (u, v) are the moduli parameters describing the solution. The attractor equa-

tions follow from an extremization of the entropy function and at the attractor fixed point

Smacro = E . It is indeed natural to examine the thermodynamic geometry of BTZ Chern

Simons black holes with such higher derivative terms and investigate the effect of thermal

fluctuations on this geometry. In particular the sensitivity of the scalar curvature to the

higher derivative corrections may lead to useful insight into the thermodynamic behaviour.

A possible extension of the thermodynamic geometry may be proposed as the Hessian

of the Sen entropy function as E as gij = −∇i∇jE(p, q, u, v) although the thermodynamic

interpretation away from the attractor fixed point is not quite clear. Following [6] this

should be proportional to the moduli space metric and may be used to study the moduli

space geometry. It should also be possible to understand the attractor flows in the context

of the thermodynamic geometries. The Sen entropy function E is particularly suited

for this analysis as it assumes no supersymmetry and this considerably simplifies the

computations. We should mention here that the BTZ black hole solution has an effective

one dimensional moduli space which is geomtricaly trivial. However the geometrical

analysis may be also applied to other black hole solutions described earlier which posess

interesting moduli space geometries.

It is to be emphasized here that the thermal fluctuations in the canonical ensemble may

be analysed through purely thermodynamic considerations. In contrast the α′ corrections

to the black hole entropy from higher derivative terms in the effective action may be

analysed from a purely gravitational perspective through Walds analysis of a generaly

covariant theory of higher curvature gravity [1]. Although the structures of the corrections

are simmilar they may enter with opposing signs leading to a cancellation. In addition

there should be quantum corrections following from purely quantum gravitational effects.

We note that it is not meaningful to analyse corrections due to thermal fluctuations over

and above corrections due to pure quantum gravity effects.

It is the above considerations, that we set out to explore in this paper in the context of

the BTZ black hole which is the simplest black hole system to analyze. As indicated earlier

the BTZ black hole is particularly significant for the matching of macrscopic and micrscopic

entropies at subleading orders. Our main result is that the thermodynamic geometry is flat

for the rotating BTZ black hole in the presence of the Chern-Simons and higher derivative

terms. We show that inclusion of thermal fluctuations non-trivially modify the thermody-

namic geometry of the BTZ black hole both with and without the Chern-Simons and the

higher derivative corrections. As a by-product of our results, we show that the leading order
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correction to the canonical entropy of the BTZ black hole due to thermal fluctuations are

reproduced in the presence of Chern-Simons terms also illustrating further the universality

of these corrections.4 Additionaly we have also explored an extension of the thermodynamic

geometry based on the Hessian of the Sen entropy function with respect to the charges and

the moduli as extensive variables in the spirit of [11]. It turns out the thermodynamic

geometry of the BTZ black hole remains flat both with and without the Chern-Simons

term away from the attractor point and the curvature is insensitive to the higher derivative

corrections even at the attractor fixed point. We point out here that this is possibly due to

the simple structure of the BTZ black hole and associated trivial one dimensional moduli

space with no interesting geometry. We are currently exploring other extremal black hole

solutions of N=2 supergravity which clearly shows the thermodynamic curvature to be

sensitive to the higher derivative contributions and non holomorphic corrections [20].

The article is organized as follows. In section 2, we first review some known facts

about the thermodynamic geometry for BTZ black holes, mainly to set the notations and

conventions used in this paper, and then examine the thermodynamic geometry of BTZ

black holes including small thermodynamic fluctuations. In section 3, we examine the

Ruppeiner geometry of the BTZ black hole in the presence of the Chern-Simons term [13]

and show that including small fluctuations in the analysis, the leading order correction to

the entropy turns out to be the same as that of [16]. We then calculate the Ruppeiner

curvature scalar and verify the bound on the Chern-Simons coupling, as predicted by

Solodukhin. Section 4 contains some comments on higher derivative corrections to the

BTZ black hole entropy, and discussions and directions for future investigations. Some of

the calculations are unfortunately too long to reproduce here, and whereever necessary, we

have used numerical techniques to highlight and illustrate our results.

2. Thermodynamic geometry of BTZ black holes

In this section, we study certain aspects of the thermodynamic (Ruppeiner) geometry of

BTZ black holes. We will use the units 8GN = ~ = c = 1 and start by reviewing the results

for the rotating BTZ black hole and then examine the role of small thermal fluctuations.

2.1 Rotating BTZ black holes

The purpose of this subsection is mainly to set the notations and conventions that will be

followed in the rest of the paper. We start with the BTZ metric

ds2 = −N(r)dt2 +
1

N(r)
dr2 + r2

(

Nφdt + dφ
)2

(2.1)

where N and Nφ are the (squared) lapse and shift functions defined by

N(r) =
J2

4r2
+

r2

l2
− M ; Nφ = −

J

2r2
(2.2)

4See, for eg. [19] for some related works on BTZ black hole entropy, its logarithmic corrections, and

logarithmic corrections to certain other classes of black hole geometries.
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with M and J being the mass and the angular momentum of the black hole, and l2

represents the Cosmological constant term. The BTZ black hole has two horizons, located

at

r± =

√

1

2
Ml2 (1 ± ∆) (2.3)

where

∆ =

√

1 −
J2

M2l2
(2.4)

The mass and angular momentum of the black hole may be expressed in terms of r± of

eq. (2.3) as;

M =
r2
+ + r2

−

l2
; J =

2r+r−
l

(2.5)

The BH entropy of the ordinary BTZ black hole is given by

S = 4πr+ (2.6)

The Ruppeiner metric is two dimensional, and is a function of the black hole mass M and

angular momentum J . Explicitly, the metric is given by

gij = −

( ∂2S
∂J2

∂2S
∂J∂M

∂2S
∂J∂M

∂2S
∂M2

)

(2.7)

with i, j ≡ J,M .

We will use this general form of the Ruppeiner metric throughout this paper. A simple

calculation shows that the Christoffel symbols are given by 5

ΓJJJ = −
1

2

∂3S

∂J3
ΓMMM = −

1

2

∂3S

∂M3
ΓJJM = −

1

2

∂3S

∂M∂J2

ΓJMJ = −
1

2

∂3S

∂M∂J2
ΓJMM = −

1

2

∂3S

∂J∂M2
ΓMMJ = −

1

2

∂3S

∂M2∂J
(2.8)

with the symmetries relating the other components. The only non-vanishing component of

the Riemann-Christoffel curvature tensor is RJMJM = N/D, where

N =

(

∂2S

∂J2

)

[

(

∂3S

∂M∂J2

)(

∂3S

∂M3

)

−

(

∂3S

∂J∂M2

)2
]

+

(

∂2S

∂M2

)

[

(

∂3S

∂J∂M2

) (

∂3S

∂J3

)

−

(

∂3S

∂M∂J2

)2
]

+

(

∂2S

∂J∂M

)[(

∂3S

∂M∂J2

) (

∂3S

∂J∂M2

)

−

(

∂3S

∂J3

)(

∂3S

∂M3

)]

(2.9)

and

D = 4

[

(

∂2S

∂J2

)(

∂2S

∂M2

)

−

(

∂2S

∂J∂M

)2
]

(2.10)

5Our notation is Γijk = gij,k + gik,j − gjk,i
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The Ricci scalar is

R =
2

detg
RJMJM (2.11)

It is easy to compute the Ricci scalar by using

r+ =
1

2

[

√

l (Ml + J) +
√

l (Ml − J)
]

(2.12)

Using eq. (2.12) in eqs. (2.6), (2.11), (2.9) and (2.10), it can be easily shown that the Ricci

scalar vanishes identically [10].

We might point out here that in [7], from considerations of the laws of black hole

thermodynamics, the authors have argued that the internal energy of a charged or rotating

black hole might not always be equal to its mass. Although we are not in full agreement

with the arguments of [7], we have checked nevertheless that a modification of the internal

energy of the rotating BTZ black hole in lines with [7] does not change the observation

above.

2.2 Inclusion of thermal fluctuations

We will now discuss the Ruppeiner geometry of BTZ black holes including thermal fluctu-

ations about the equilibrium. As is well known, any thermodynamical system, considered

as a canonical ensemble has logarithmic and polynomial corrections to the entropy [14].

These considerations apply to black holes as well (considered as a canonical ensemble), and

the specific forms of the logarithmic and polynomial corrections has been calculated for a

wide class of black holes in [15]. It is to be noted that the applicability of this analysis

presupposes that the canonical ensemble is thermodynamicaly stable. This requires a pos-

itive specific heat or correspondingly the Hessian of the entropy function must be negative

definite.

The microcanonical entropy for any thermodynamical system, incorporating such cor-

rections, is [14]

S = S0 −
1

2
ln

(

CT 2
)

(2.13)

where S0 is the entropy calculated in the canonical ensemble, and S is the corrected mi-

crocanonical entropy. C is the specific heat, and it is understood that appropriate factors

of the Boltzmann’s constant are included to make the logarithm dimensionless. The ap-

proximation is valid only in the regime where thermal fluctuations are much larger than

quantum fluctuations. In [15], the BTZ black hole was analysed in this framework and

eq. (2.13) reproduces the leading order correction to the entropy as obtained in [16]. It

is then a natural question as to how the Ruppeiner geometry for the BTZ black hole is

modified due to the thermal fluctuations in the canonical ensemble and this is what we will

analyse in the rest of this section.

The Ruppeiner metric for the corrected entropy for the BTZ black hole of eq. (2.13) can

be calculated using the equations (2.9), (2.10) and (2.11). Since the expressions involved

are lengthy, we will set the cosmological constant l = 1 . The Hawking temperature of the

BTZ black hole is given by

TH =
1

2π

[

r2
+ − r2

−

r+

]

(2.14)
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which can be readily expressed in terms of the entropy of eq. (2.6) as

TH =
S

8π2
−

8π2J2

S3
(2.15)

The specific heat is

C =

(

∂M

∂T

)

J

=
S

(

S4 − 64π4J2
)

S4 + 192π4J2
(2.16)

The specific heat is positive and this ensures that the stability of the corresponding canon-

ical ensemble. Alternatively the Hessian of the internal energy ( ADM mass) with respect

to the extensive variables in the energy representation is given as

||
∂2M

∂Xi∂Xj

||=
1

S2l2
−

64π4J2

S6

. This is positive provided J
S2 < 1 ensuring the thermodynamic stability of the corre-

sponding BTZ black hole. It is to be noted that this condition also governs the situation

away from extremality. Substituting the expressions of (2.15) and (2.16) in (2.13), we

obtain the corrected entropy of the BTZ black hole, and the Ruppeiner metric for this

entropy. The expression of the curvature scalar of this metric is far too complicated to

present here, so we present the results numerically.

First, we consider the Ruppeiner metric with just the leading logarithmic correction

of [16]. In this case, the analysis is simplified and (2.13) reduces to

S = S0 −
3

2
lnS0 (2.17)

Figure (1) shows the curvature scalar of the Ruppeiner metric, R, plotted against the

angular momentum J for M = 100, where we have taken only the logarithmic correction

of eq. (2.17) to the entropy into account. We have restricted to small values of J , so

that we are far from extremality, i.e in the regime where these results are valid. Indeed,

for near extremal BTZ black holes (i.e for very low temperatures), our analysis is not

valid [15]. ¿From figure (1), we see that in this case, the curvature scalar is not positive

definite, and indeed, by extending the values of J , it is seen that the curvature scalar

goes to zero at J increases towards its extremal value. However, we must point out that

our calculations that lead to this result can only be trusted when the black hole is far

from extremality. Also note that even at zero angular momentum, there is a small but

finite value of the curvature scalar. This indicates that even at zero angular momentum,

the statistical system is interacting, once small fluctuations are included. This should be

contrasted with the non-rotating BTZ black hole which is a non-interacting system even

when small fluctuations are included. We have checked that increasing the value of M , the

value of the curvature scalar becomes smaller, while preserving the shape of the graph.

Figure (2) shows the Ruppeiner curvature scalar plotted against the angular momen-

tum, calculated using eq. (2.13). Interestingly, in this case, the Ruppeiner scalar is positive

definite. Again, we have restricted ourselves to values of J small compared to M (i.e far

from extremality) where our results can be trusted.
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Figure 1: The Ricci scalar R of the Ruppeiner metric for the BTZ black hole, as a function of the

angular momentum J , with only the logarithmic correction to the entropy (eq. 2.17) being taken

into account. The mass M has been set to 100.
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Figure 2: The Ricci scalar R of the Ruppeiner metric for the BTZ black hole, as a function of the

angular momentum J , including small fluctuations (eq. 2.13). The mass M has been set to 100.

3. BTZ black holes with the Chern-Simons term

Recently, Kraus and Larsen [12] and Solodukhin [13] have studied gravitational anomalies

for three-dimensional gravity in the presence of the Chern-Simons term. Indeed, the BTZ

black hole is a bonafide solution to the gravitational action that included both the Einstein-
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Hilbert and the Chern-Simons term. We will henceforth refer to the BTZ black hole with

the Chern-Simons term as the BTZ-CS black hole.In [12, 13], the entropy of BTZ-CS black

holes have been analysed, and these authors have derived an expression for the entropy,

which differes from the entropy of the “usual” BTZ black hole, eq. (2.6). The modified

entropy for the BTZ-CS black hole is

S = 4π

(

r+ −
K

l
r−

)

(3.1)

where K is the Chern-Simons coupling. The extra term in eq. (3.1) as compared to eq. (2.6)

is the contribution from the Chern-Simons term and has very interesting properties. In

particular, [13] predicts a stability bound

|K| ≤ l (3.2)

on the Chern-Simons coupling, from physical considerations. In view of the above, it is

natural to ask what type of Ruppeiner geometry is seen by the BTZ black hole in the

presence of the Chern-Simons term and it is this issue that we address in this section.

It is important to remember here that the usual mass and angular momentum of

the BTZ black hole is modified in the presence of the Chern-Simons term. This may be

calculated by integrating the modified stress tensor of the theory using the Fefferman-

Graham expansion of the BTZ metric and reads [13]

M = M0 −
K

l2
J0; J = J0 − KM0 (3.3)

where M0 and J0 are the the mass and angular momentum of the usual BTZ black hole

of eq. (2.5). We have calculated the Ruppeiner metric for the BTZ black hole (with the

thermodynamic coordinates now being M and J , rather than M0 and J0) in the presence

of the Chern-Simons term, taking into account the modifications of the mass and angular

momentum as in eq. (3.3).6 Writing the entropy as

S = 2π
[

√

(1 − K) (M + J) +
√

(1 + K) (M − J)
]

(3.4)

it is easy to calculate the geometric quantities. The expressions leading to the calculation

of the Ricci scalar are not important, and we simply point out that the curvature scalar

for this geometry turns out to be zero, i.e, the Ruppeiner geometry of the BTZ-CS black

hole is flat showing that it is a non interacting statistical system. This is the main result

of this subsection. Additionaly we would like to state that we have explicitly studied the

generalization of the Ruppeiner metric away from the attractor fixed point at the horizon

as the Hessian of the Sen entropy function E(p, q, u, v) with respect to both the charges

and the moduli fields. We have verified that the thermodynamic curvature is insensitive

to the higher derivative corrections and remains flat both at the horizon and away from it.

This is possibly due to the fact that the effective moduli space of BTZ black holes is one

dimensional and posess no interesting geometric structure.

6We have set the cosmological constant l = 1 for simplicity.
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3.1 BTZ-CS black holes with small fluctuations

We will now discuss some thermodynamic properties of the BTZ-CS black holes, treating

the system as a canonical ensemble. We allow for small thermal fluctuations of the system

considered as a canonical ensemble, and study the thermodynamic geometry of the BTZ-

CS black hole in lines with our treatment of the usual rotating BTZ black hole described

earlier

As before, we would like to analyse the Ruppeiner metric for the BTZ-CS black hole,

with the entropy now being given by eq. (3.1). Again, for ease of notation, we set the

cosmological constant l = 1. We begin by expressing the outer and inner horizons of the

BTZ-CS black hole as

r+ =
1

2

[

√

M0 + J0 +
√

M0 − J0

]

r− =
1

2

[

√

M0 + J0 −
√

M0 − J0

]

. (3.5)

In terms of the corrected mass and angular momentum of eq. (3.3), these expressions

become

r+ =
1

2

[

√

M + J

1 − K
+

√

M − J

1 + K

]

r− =
1

2

[

√

M + J

1 − K
−

√

M − J

1 + K

]

(3.6)

The equation for the entropy, given by (3.1), can now be solved to obtain the mass M in

terms of S and J , and gives

M =
1

2K2





(

2KJ +
S2

4π2

)

+

[

(

2KJ +
S2

4π2

)2

− 4K2

(

S4

64π4
+

S2KJ

4π2
+ J2

)

]
1

2



 (3.7)

The temperature of the BTZ-CS black hole, given by
(

∂M
∂S

)

J
may be obtained from the

expression for M , and is given by

T =
SK2

[

S2
(

1 − K2
)

+ 8JKπ2
(

1 − K2
)

+
[

S2
(

1 − K2
) (

S2 + 16π2JK
)]

1

2

]

4π2 [S2 (1 − K2) (16π2KJ + S2)]
(3.8)

The specific heat may be calculated from the expression

C =

(

∂M

∂T

)

J

=
T

(

∂T
∂S

)

J

(3.9)

and is evaluated as

C =
Sα

[

β +
(

8KJπ2 + S2
) (

1 − K2
)]

αβ + S2 (1 − K2) (S2 + 24KJπ2)
(3.10)

where α = 16π2KJ + S2 and β =
(

S2
(

1 − K2
)

α
)

1

2 . It may be checked that the specific

heat is positive ensuring local thermodynamic stability. Using eq. (3.10), we calculate the
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Figure 3: The Ricci scalar R of the Ruppeiner metric for the BTZ-CS black hole, as a function

of the Chern-Simons coupling K, with only the logarithmic correction to the entropy being taken

into account. The mass M has been set to 100 and we have set J = 1 to ensure that we are far

from extremality.

correction to the canonical entropy including small thermal fluctuations of the statistical

system and this leads to,

S = S0 −
1

2
lnCT 2 (3.11)

where S0 is the entropy (3.1) of the BTZ-CS in the canonical ensemble. We approxi-

mate (3.11) in the limit of large entropy, following [15]. It may be easily examined that in

the limit of S À J2 which is the stability bound, the above formula reduces to

S = S0 −
3

2
lnS0 (3.12)

It is interesting to note that the factor of 3
2
, first calculated in [16] is reproduced for the

BTZ-CS black hole as well illustrating the seeming universality of this factor. This is one

of the main result of this subsection.

We now calculate the Ruppeiner geometry correspoding to the modified entropy of the

BTZ-CS black hole with thermal fluctuations. As in the last section, we first present the

numerical result for the Ricci scalar using the leading order correction of eq. (3.12).

This is depicted in figure (3). In this analysis, we have set M = 100 and J = 1,

to ensure that we are far from extremality. The Ricci scalar is positive definite in this

case. The Ricci scalar diverges for |K| = 1. More appropriately, since we had set the

cosmological constant to unity, it is not difficult to see that the bound on K from the

Ruppeiner geometry is |K| ≤ l where l is the cosmological constant. This is of course as

expected, since the entropy (3.4) becomes unphysical beyond this limit.
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Figure 4: The Ricci scalar R of the Ruppeiner metric for the BTZ-CS black hole, as a function of

the Chern-Simons coupling K. The mass M has been set to 100 and we have set J = 1 to ensure

that we are far from extremality.

In figure (4), we present the result for the Ricci scalar of the Ruppeiner geometry taking

into account the full correction of eq. (3.11). Again, as a function of K, the curvature scalar

is positive definite and the graph has the same qualitative features as in figure (3).

For the sake of completeness, we have also numerically evaluated the Ricci scalar of

the Ruppeiner metric for the BTZ-CS black hole as a function of the angular momentum,

and studied its behaviour. The plots in this case are qualitatively the same as in figure (1)

and figure (2) and we do not discuss them further.

4. Discussions and conclusions

In this article, we have mainly investigated the thermodynamic geometry of a class of BTZ

black holes, both with and without the Chern-Simons term. We have shown that the Rup-

peiner geometry remains flat even with the introduction of the Chern-Simons term, as it

was without this term. However, introducing small thermal fluctuations in the analysis

produces a non-zero Ricci scalar for the thermodynamic geometry, and we have calculated

this quantity for some special cases. As a byproduct of our calculations, we have shown

that the leading logarithmic correction to the canonical entropy of the BTZ-CS black hole

retains the same form as for the ordinary rotating BTZ black hole thus illustrating the

universality of this correction. We should mention here that the validity of this analysis

depends on the local thermodynamic stability which is ensured by a positive specific heat

for the BTZ and the BTZ-CS black holes. This is also generaly true for charged and rotat-

ing charged black holes. It would be intetesting to extend our analysis to other black holes

and investigate the subtle interplay between the corrections due to thermal fluctutaions
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and α′ corrections resulting from higher derivative terms. It is expected that the corre-

sponding thermodynamic curvatures would be sensitive to these corrections. Furthermore

thermodynamic geometries provide a direct way to analyse critical points of black hole

phase transitions which is an area of current interest. This may have important implica-

tions for black holes in string theory and the geometry of moduli spaces. Some of these

issues will be investigated in future.

A few comments are in order here. It is clear that our analysis will be similar for BTZ

black holes with higher derivative corrections. As shown in [12] and [17], the form of the

entropy for the BTZ-CS black hole remains the same in the presence of the higher derivative

corrections, and it is the central charge of the underlying conformal field theory that is

modified. Hence, we expect qualitatively similar results for the thermodynamic geometry

of BTZ-CS black holes with higher derivative corrections. We have explicitly verified this.

The thermodynamic geometry of BTZ black holes turn out to be insensitive to the higher

derivative corrections and remains flat. A generalization of the Ruppeiner metric in terms

of the Hessian of the Sen entropy function also shows that the resulting geometry is flat

away from the attractor point. This is due to the fact that the effective moduli space of

BTZ black holes is one dimensional with no interesting geometric structures. Currently

we are exploring the extremal small black holes in N=2 supergravity and preliminary

computations clearly shows that the thermodynamic geometry is sensitive to the higher

derivative corrections.

As we have pointed out earlier, leading logarithmic correction to the black hole entropy

arises from various sources. The black hole considered as a canonical ensemble admits such

corrections to the entropy due to standard thermal fluctuations. The effect of such fluctu-

ations may be analysed from purely thermodynamic considerations. It is to be understood

that these fluctuations vanish in the thermodynamic limit of large systems where the canon-

ical and the microcanonical entropy becomes identical. Apart from these the black hole

entropy also admits logarithmic corrections due to presence of higher derivative terms to

the gravitational action from the perspective of low energy effective field theories resulting

from some underlying theory of quantum gravity. These higher derivative corrections are

accessible to analysis through purely gravtitational considerations like Walds formula or

through gravitational anomalies. It is a meaningful exercise to analyse these two correc-

tions simultaneously and in certain cases leads to a cancellation. However corrections due

to purely quantum effects must be considered separately. Lacking a viable fundmaental

theory of quantum gravity these quantum corrections still need to be elucidated.

We should also remark here that as pointed out in [13] that the modification of the

entropy due to the gravitational Chern-Simons term being dependent on the radius of the

inner horizon seems to probe the black hole interior. This is in contrast to the higher

derivative α′ corrections which are only dependent on the radii of the outer horizon. This

seems to indicate that contrary to the existing point of view certain degrees of freedom

may be associated with the black hole interior. This may have implications for space time

holography and is an important issue for future investigations.

Furthermore work is in progress to generalize the notion of thermodynamic geometries

to extremal black holes in string theory, away from the attractor fixed points through the
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Hessian of the corresponding entropy functions. Following [6] these are expected to lead

to interesting insights into the nature of the moduli spaces and understanding of the full

structure of the interpolating solutions away from the attractor fixed point at the horizon.

It should be possible to understand the attractor mechanism as renormalization group flows

in the space of thermodynamic geometries in this framework.
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